Circle the tree you will be using for the CO2 calculations

Name(s)

Directions: Calculate your schools carbon footprint by using the following steps below.

NEED TO KNOW!	
1 kwh of energy produced from a coal powered electricity plant generates 2	1.33 kg of CO ₂
1 kWh = 1.33 kg CO ₂	
 Step 1: The appliances in your school that use the most electricity are listed below. In order to calculate AUPs carbon footprint you will need to estimate: the number of each appliance in your school how long each appliance is in use per day 	
Fluorescent Light Bulb: 0.025 kW used each hour	
0.025 kW X X X hr X 1.33 kg CO ₂ / KWh = # of light bulbs in AUP hours used each day	kg CO ₂ /day
Laptop Computer: 0.09 kW used per hour	
0.09 kW X $\underline{\qquad}$ X $\underline{\qquad}$ hr X 1.33 kg CO ₂ / KWh = hours used each day	kg CO ₂ /day
Air Conditioning: 0.76 kWh used per hour	
0.76 kW X X hr X 1.33 kg CO ₂ / KWh = # of air conditioning unit hours used each day	kg CO ₂ /day
Part 2: Add the carbon production from all three appliances together to calculate AUP's total CO_2 production.	

Total CO₂ production from your school:

How much CO₂ is produced per year?

(given there are 365 days in one year)

How Much Carbon Can Your Tree Capture?

Name(s)

Step 1: Calculate the Area of your tree using the Circumference (C):

We know that π = 3.14. Insert your value for C and re-arrange to solve for r. Then use that r value to calculate the Area of your tree using the formula:

$$A = \pi r^2$$

Show your work here:

Step 2: Calculate the Volume of your tree using Area (A) and Height (H)

Use the value for A you just calculated and Insert your value for H to solve for V Show your work here:

Step 3: Calculate the Mass of your tree using Area (A) and Density(D)

Mass (M) = $A^{x}D$

We will assume that the Density (D) of your tree is 700Kg/m^3 ; a typical density for a tree. Use the values for A and D you just calculated to solve for mass. Show your work here:

Step 4: Calculate the Amount of CO₂ sequestered by your tree

Trees use CO₂ and water in the air for Photosynthesis. It takes 6 molecules of CO_2 to make one molecule of sugar (tree food!). The ratio of the mass of CO₂ used to the mass of Sugar Produced is 1.5, therefore:

 CO_2 sequestered = 1.5 x M

Use the value for M you just calculated to solve for CO2 sequestered. Show your work here:

> Carbon Sequestered per life time of tree: Unit: Kg

Volume:

Mass:

Unit: m³

Unit: Kg

Unit: m²

Area:

Use the map provided to count how many trees are around AUP

Show your Work Here:

Assumptions:

- Assume each tree is the same size as the one you just completed calculations for.
- Assume each tree is 50 years old.

Answer:

Kg CO₂ sequestered per Year By trees around AUP

<u>Step 6</u>: Conclusions: <u>ACCORDING TO YOUR DATA</u> How does the amount of CO_2 produced by AUP compare to the amount of CO_2 sequestered in the trees? Is this what you expected to find? Explain.