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Abstract

In this pilot study, we used an unsupervised learning algorithm for self-
organization and pattern matching to create feature maps that can be applied to
morphological problems. We designed a network to analyze 83 first and/or sec-
ond upper and lower molar sets representing 13 anthropoid primate species,
based on three-dimensional measures obtained from laser-digitized, virtual
specimens. As shown in a comparison with a principal-component analysis of
the virtual specimens, the artificial neural network approach provided more bio-
logically meaningful information than the conventional multivariate analysis ap-
proach. The methodology discovered partitions and hierarchical clusters consis-
tent with anthropoid systematics, from the species (or subspecies) level to the
highest categories, by sorting and allocating upper and lower molar teeth. As
one might expect, measures of upper molars were richer in phenetic information
than those of lower molars, even among the anatomically diverse platyrrhines.
We also show that reducing taxonomic noise (i.e. biological variation) by limiting
the analysis to a monophyletic subset improves discrimination.
Copyright © 2005 S. Karger AG, Basel

Introduction

In this report, we present a pilot study that applies an artificial neural network
(ANN) architecture to a database of three-dimensional (3-D) digital morphology
measures describing a diverse sample of anthropoid molar teeth. 3-D digital mor-
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phology, the study of form based upon 3-D digitized or virtual specimens, has
many advantages [Ungar and M’Kirera, 2003], both theoretical and practical. The
key benefits we exploit here are the potential to define and extract precise measures
that are more realistic descriptors of complex anatomical form than caliper meas-
ures. Using accurately digitized specimens, one can take linear (point to point),
conventional two-dimensional (2-D; compound point to point measures describing
a plane) and 3-D measures, i.e. explicit multi-point dimensions of contours, sur-
faces and volumes which accurately represent structural shape or space, as defined
by their geometric coordinates.

ANNs are hardware and software implementations based on biological models
of circuitry and process used by humans to accomplish many fundamental tasks,
such as pattern recognition, memory and visualization. Like the brain, ANNs em-
ploy simple processors with a high degree of parallelism. The strength of the ANN
architecture used in this study that appeals to comparative morphology and sys-
tematics is its potential for knowledge discovery, pattern recognition, adaptability
and self-organization.

Our pilot study has two goals: (1) to apply the approach of ANNs to a sam-
ple of anthropoid molar teeth in order to investigate its potential as a systematics
tool and (2) to begin to evaluate the power of geometrically true 3-D measures, as
opposed to standard caliper measures, as quantitative descriptors of molar mor-
phology. The samples we have chosen do not reflect any particular systematics or
anatomical problem. Rather, they were selected to represent a range of morpholo-
gies, a diversity of phylogenetic groups, a mixture of interspecific and intraspeci-
fic pairings of interest, and because we had convenient access to the material.

ANNs and Unsupervised Learning

ANNSs are systems of simple processors (neurons) that are interconnected in an
organized fashion (architecture). There are numeric values associated with the in-
terconnections (weights) that are adjusted over time to create a mapping between a
n-dimensional input space and a m-dimensional output space. These weights repre-
sent the knowledge about the problem domain. Changes in the weights are analo-
gous to learning. A specific architecture will have a learning algorithm associated
with it, and each of the neurons in the architecture will make use of a function
(linear or nonlinear) to describe the neuron’s internal state (activation) resulting
from received stimuli. The architectures (neurons and their interconnections) are
computational approaches simulating the biological neural network. Therefore,
many of the architectures, including the one used in this study, are based on find-
ings from the field of neuroscience {Kohonen, 1989].

Learning in an ANN can occur in either a supervised or an unsupervised fash-
ion. A supervised approach uses a learning algorithm that creates an input/output
mapping based on a labeled training set (i.e. an input vector is paired with a cor-
rect output vector). In this case, the network will learn a functional approximation
from the input/output pairings and will have the ability to recognize or classify a
new input vector into a correct output vector (generalization). An unsupervised
learning architecture, in contrast, presents the network with only a set of unlabeled
input vectors. Unsupervised learning is used for data compression, feature discov-
ery and classification. The sole information available to the network is the correla-
tions it derives from the input vectors. The network is expected to create charac-

304 Folia Primatol 2005;76:303-324 King/Rosenberger/Kanda



terizations about the input vectors from these correlations and to produce outputs
corresponding to a learned characterization (i.e. knowledge discovery) [King,
1998].

As with humans, learning with ANNs takes time. When using either a super-
vised or an unsupervised learning algorithm, data are presented to the network nu-
merous times. One complete presentation of a set of training data is referred to as
an epoch. As the data are repeatedly presented to the network, the learning algo-
rithm evolves the weights connecting the neurons (i.e. learns). It is within the
weights that knowledge is stored (represented) about the relationships being learned
or discovered by the network.

ANNs that use unsupervised learning have the goal of determining natural
clusters or feature similarity within the data set and to display its results in a mean-
ingful manner. Since no labeled training sets are used in this approach, the outputs
from the unsupervised learning network must be examined by a domain expert to
determine if the classification provides any new insight into the data set. If the re-
sult is not reasonable, then an adjustment is made to one of the training parameters
used to guide the network’s learning, and the network is presented the patterns
again. However, before examining the more complex self-organizing map (SOM)
architecture, it is beneficial to recall a simpler form of unsupervised learning that
makes use of a clustering algorithm. These networks utilize input data in a vector
form, and a distance metric (e.g. Hamming distance, Euclidean distance) is used to
determine nearness (similarity) of a new input pattern to an existing cluster. Deci-
sion options for the network are to include the new pattern into an existing cluster
or to create a new cluster for this pattern. Learning (i.e. weight adjustment) nor-
mally occurs after a pattern has been assigned to a cluster. In the case of a cluster-
ing algorithm, this is simply adjusting the weights defining the center of the cluster.
An example of this type of unsupervised learning network is k-means clustering
[Moon and Stirling, 2000].

Self-Organizing Maps

Kohonen [1989] proposed that there is a general tendency in human informa-
tion processing to compress complex information by forming reduced representa-
tions of the most relevant facts. An important aspect of this reduction in dimension-
ality is the ability to preserve the structure (interrelationships) of the information.
He proposed that this simplified representation is accomplished via spatial ordering
of processing units (neurons) within the brain. However, this ordering did not in-
volve movement of any neurons but a change in the internal parameters of identical
units.

A self-organizing feature map algorithm is used to convert patterns of arbitrary
dimensionality into the responses of 2- or 3-D arrays of neurons (maps). A SOM
may be thought of as a self-organizing cluster. It is clustering because of its ten-
dency for data compression and it is self-organizing because similar clusters are
spatially near on the map. The basic components of a 2-D SOM are shown in figure
1. Note that each element of the input vector x (description of unknown specimen)
is connected to each of the processing units on the map through the weight vector
wy. After training, the SOM will define a mapping between the input data space and
the 2-D map of neurons. The output y; of a processing unit is then a function of the
similarity between the input vector and the weight vector. The nonlinear mapping
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Fig. 1. Graphic depiction of data analysis using an ANN and a SOM (see text).
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Fig. 2. Rectangular grid used for SOMs showing 4 nearest neighbors.

of the SOM utilizes a technique developed by Sammon [1969] that preserves the
higher dimensional nearness on the map. In other words, if two vectors are near
each other in high dimensional space, then they are near on the map.

Figure 1 shows how a trained feature map would respond with a winning out-
put neuron when excited by an original training pattern or an unknown input vector
pattern that is similar. Knowledge about the significance of the area around the
winning neuron will then help the user in knowledge discovery. The SOM feature
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map also functions as a nonlinear projection of the probability density function of
the high dimensional input vector onto the 2-D display [Kohonen et al., 1996]. This
means that following the formation of the self-organized internal representation for
existing implicit relationships between the 12-D original training data (i.e. after
learning), the same implicit input spatial relationships become explicit on the fea-
ture map. In simpler terms, if two points are close on the 2-D map, then they were
also close in the higher dimensional space. In other words, after training, the inter-
nal representation for knowledge about the relationships within the original training
data becomes explicit on the feature map.

The SOM algorithm is typically implemented on a planar array of neurons
(fig. 2) with spatially defined neighborhoods (e.g. hexagonal or rectangular arrays,
with 6 or 4 nearest neighborhoods, respectively). Also, the map must contain some
method of compressing the data into a manageable form. One important attribute of
a SOM is that it performs data compression without information being lost with
regard to the relative distance between data vectors. A SOM typically uses the
Euclidean distance to determine the relative nearness or similarity of data.

The idea of a spatial neighborhood, N,,, is used in measuring the similarity
between the input vector and values of the reference vector represented by the
vector of weights between the input layer and all of the neurons on the map. Be-
fore training begins, the weights are randomized and a learning rate and neighbor-
hood size are selected. Then, when a training vector is presented to the network, it
finds the neuron on the map with the most similar weight values. The weights of
the winning neuron and the neighborhood neurons are then adjusted (learning) to
bring them closer to the training vector. Over the course of the iterative training
process, the neighborhood size and learning rate are independently decreased until
the map no longer makes significant adjustments. The result is that the neurons
within the currently winning neighborhood undergo adaptation at the current
learning step while the weights in the other neighborhoods remain unaffected. The
winning neighborhood is defined as the one located around the best matching neu-
ron, m.

The operation of the SOM algorithm progresses as follows. First, for every
neuron i on the map, there is associated a parametric reference vector w;. The initial
values of w; (0) are randomly assigned. Next, an input vector x (R") is applied si-
multaneously to all of the neurons. The smallest of the Euclidean distances is used
to define the best-matching neuron; however, other distance metrics may be ex-
plored to determine their efficacy in clustering the codebook vectors [King et al.,
1993]. As the training progresses, the radius of N,, decreases such that N, >
Num2) > Nyg3)..., where #; < t, < t;... In other words, the neighborhood of influence
can be very large when learning begins, but towards the end of learning, the
neighborhood may involve only the winning neuron. The SOM algorithm also uses
a learning rate that decreases with time.

In summary, the self-organization of the map proceeds as follows: (1) the map
is presented with a sufficient number of training patterns; (2) weights are only ad-
justed on the neurons in the winning neighborhood, and (3) the adjustment is in
proportion to the activation received by each neuron in the neighborhood. The ef-
fect of this weight adjustment rule is a tendency to enhance the same responses to a
sufficiently similar subsequent input. As a result, a map is obtained with weights
coding the stationary probability density function of the pattern vectors used for the
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training. The map also displays the data from a different viewpoint; instead of
viewing the data as a n-dimensional vector, it can be viewed as a 2-D plot. This is
where expert human analysis is enhanced. Instead of looking at the n-dimensional
input vector of a sample and trying to determine what its meaning is, one need only
look at the location of the sample on the map.

Materials and Methods

Measurements

We used a high-resolution laser scanner with an accuracy of 0.025 mm to generate an
array of x,y,z coordinate points to describe 83 first and/or second upper and lower molar
teeth of 13 anthropoid primate species. Each of the specimens was digitized at a density of
approximately 150 points/mm?®. This density level faithfully captures surface detail in very
small specimens. Using this figure as a standard also means that the amount of surface relief
described per unit area is comparable across all cases. This serves to minimize bias in meas-
urements of arca and volume, which would be sensitive to the size and shape (topographic)
differences present in the sample. Our methodology for collecting coordinate data and the
editing process involved in deriving measurements from the data — such as the demarcation
of anatomical features for measurement — has been proven in numerous repeat trials
[Rosenberger and Kellogg, unpubl. observations]. Negligible error was found in measure-
ment replication tests within and between specimens. Linear measures taken on population
samples of virtual specimens were also statistically indistinguishable from typical caliper
measurements taken on the actual specimens.

The following measurements were used:

Laser basal length (LBL): on a digital specimen aligned with the mesiodistal axis par-
allel to the x-axis, LBL is the distance between minimum and maximum x-coordinate values
in the x-axis.

Laser basal breadth (LBB): on a digital specimen aligned with the mesiodistal axis
parallel to the x-axis, LBB is the distance between minimum and maximum y-coordinate
values found anywhere between the occlusal table of the crown and the cervix.

Laser basal area: LBL x LBB (mm?).

Occlusal table area: area of the occlusal table, or ‘chewing surface’ of upper and lower
molars, i.e. the aspect contained within the boundaries of the cusp-crest system and exclud-
ing the crown sidewalls, except for the wear facets of the upper lingual notch and lower
buccal ectoflexid.

Cusp height: height of a cusp tip above the lowest point in the trigon or talonid basin of
an upper or lower molar, respectively, in the z-axis.

Apical distance: the oblique distance between the apical tip of a cusp and the lowest
point in the trigon or talonid basin of an upper or lower molar, respectively.

Samples

Species comprising the 83 cases used in this study are listed in table 1. The living
forms range in weight, approximately, from a 300 g Callithrix penicillata to an 11,000 g
Colobus satanus; molar lengths range from 2.3 to 7 mm, respectively, to 10 mm in the fossil
catarrhine Oreopithecus bambolii. We digitized sharp epoxy or plaster casts of molars or
tooth rows showing little or no detectable wear rather than actual specimens; mounting jaws
would have required additional setup time. Except for a few fossils, each individual was
represented by an occluding set of teeth. In the extant species, except for callitrichines, an
upper and lower second molar set was used. First molars were substituted for the M2s in
callitrichines, as the second molars are highly reduced even in the three-molared Callimico.
For the fossils, these conditions were relaxed. All have been identified as likely second mo-
lars, but uppers and lowers did not necessarily belong to the same individuals. In a few
cases, including Oreopithecus, the fossil samples were also moderately worn.

308 Folia Primatol 2005;76:303-324 King/Rosenberger/Kanda



Table 1. Samples and measurements used in this study

Taxon Pat- Hypo- Hypo- Proto- Proto- Meta- Meta- Ento- Ento- LBL LBB LBA OTA
tern  conid conid conid conid conid conid conid  conid
No. Z AD 7 ADb. 7 Ab. 7 AD

Colobus satanus 1 1.58 327 1.62 296 292 383 229 3.3 6.75 632 42.66 43.51]
Piliocolobus pennantii 2 131 240 145 238 2.14 247 1.87 228 6.25 4.14 2588 24.12
Procolobus verus 3 1.85 3.67 1.84 299 2,14 2.78 1.70  2.49 5.13 504 2586 31.65
Macaca nigra 4 1.36 240 1.69 3.20 275 4.42 220 311 837 7.78 65.12 63.49
Oreopithecus bambolii 5 0.19 253 038 3.39 1.23 322 034  3.49 9.88 7.58 74.89 8589
Oreopithecus bambolii 6 0.71 2.77 1.41 3.83 1.34  3.44 0.40  3.40 9.50 7.75  73.63 65.10
Oreopithecus bambolii 7 -0.03 2.86 0.93 3.28 1.81 342 -0.02 371 1 112 9.10 101.19 89.95
?Prohylobates sp. 8 237 3.03 167 230 1.72  2.88 2.10  3.08 6.75 6.22  41.99 27.42
?Prohylobates sp. 9 1.35 326 1.82 3.75 252 337 135  2.06 812 7.12 57.81 5532
Aotus trivirgatus 10 0.57 1.28 0.65 1.57 1.23  1.66 0.95 1.45 3.50 3.07 10.75  8.99
Aotus trivirgatus 11 0.58 1.18 097 229 1.65 2.46 1.01 1.70 337 3.20 10.78 10.51
Callicebus moloch 12 0.74 135 127 254 1.56 2.14 0.76 1.25 3.38 3.09 10.44 10.13
Callicebus moloch 13 0.79 139 1.13 246 1.18  1.97 0.59 1.13 3.62 3.03 10.97 10.88
Callicebus moloch 14 0.52 127 082 245 1.38 2.17 0.82 1.08 3.75 3.01 11.29 10.40
Saimiri sciureus 15 073 1.23 1.03 1.62 1.08 1.47 0.56 1.01 2.75 2.66 732 6.91
Saimiri sciureus 16 0.69 1.21 1.17 1.67 1.17  1.50 0.50 1.07 2.61 2.70 7.05  6.39
Saimiri sciureus 17 0.73 1.14 1.05 1.86 1.10  1.61 0.62  0.90 2.88 2.67 7.69  6.86
Saimiri sciureus 18 0.61 1.15 1.13 1.69 1.28 1.68 0.59 1.07 2.62 2.63 6.89  6.55
Saimiri sciureus 19 0.84 1.34 0.97 1.66 1.23  1.50 0.90 1.11 2.63 256 6.73  6.44
Saimiri sciureus 20 0.74 128 091 1.91 0.84 1.34 0.54 095 275 2.85 7.84 597
Saimiri sciureus 21 0.66 122 1.04 1.78 1.26 1.66 0.76 1.02 2.50 2.60 6.50  6.30
Saimiri sciureus 22 0.75 1.16 1.03 1.40 1.22  1.68 0.56 1.11 2.63 2.78 7.31 6.04
Saimiri sciureus 23 0.78 1.33 1.06 1.56 1.26  1.60 0.68 1.09 2.50 2.53 6.33  6.06
Saimiri sciureus 24 0.75 1.22  0.92 1.37 1.07  1.54 0.57 1.19 2.63 2.66 7.00 6.32
Callithrix jacchus 25 0.50 1.02 0.82 1.37 1.00  1.36 0.38  0.66 2.12 2.05 435  4.06
Callithrix jacchus 26 0.58 1.03 0.99 1.60 096 134 048 0.73 2.00 2.13 426 3.93
Callithrix jacchus 27 0.68 091 0.93 1.44 076 1.18 033 062 2.50 1.99 498 4.12
Callithrix jacchus 28 0.81 0.97 1.03 1.64 084 124 038 0.73 225 2.14 4.82 430
Callithrix jacchus 29 0.54 0.82 0.81 1.32 080 1.31 028 0.74 2.13 226 4.81 3.82
Callithrix jacchus 30 0.67 1.09 0.96 1.53 0.76 1.22 035  0.54 2,12 2.05 4.35 4.28
Callithrix penicillata 31 0.64 1.02 1.01 1.45 1.06 1.41 0.56 097 225 2927 5.1 3.99
Callithrix penicillata 32 0.60 0.83 0.90 .50 098 1.33 0.48 0.89 2.50 2.12 530 4.54
Callithrix penicillata 33 0.80 0.99 1.05 1.41 1.07  1.32 0.53  0.88 225 219 493 468
Callithrix penicillata 34 0.62 0.95 0.91 1.35 099 1.25 043  0.79 2.13 213 4.54 446
Callithrix penicillata 35 0.83 1.09 1.02 1.66 1.00  1.39 0.49  0.86 2.38 2.10 5.00 4.52
Callimico goeldii 36 0.74 125 0.92 1.66 0.75 1.06 0.75 1.25 3.00 246 7.38  6.86
Callimico goeldii 37 1.05 125 1.14 1.63 1.14  1.57 0.65 1.06 2.62 241 6.31 6.27
Callimico goeldii 38 0.72 1.12  0.96 1.42 1.03  1.34 042 0096 2.38 233 555 5.28
Callimico goeldii 39 0.53 0.83 0.84 1.39 1.32  1.65 0.56 1.05 2.37 239 566 5.57
Callimico goeldii 40 0.92 148 1.21 1.46 1.27  1.51 0.41 1.07 2,62 231 6.05 595
Colobus satanus 41 2.03 327 217 3.63 2,12 3.17 1.99  2.77 6.63 7.58 50.26 48.89
Piliocolobus pennantii 42 0.56 332 0.64 4.06 2.61 3.48 1.68 234 6.50 6.81 44.27 4597
Piliocolobus pennantii 43 1.36 2.59 1.67 251 2.08 241 1.69  2.15 6.12 523  32.01 24.72
Procolobus verus 44 1.01 230 1.31 315 2,07 242 .36 2.59 5.13 533 2734 3230
Macaca nigra 45 1.61 290 1.91 3.86 1.75  3.29 1.63 242 8.75 899 78.66 57.79
Oreopithecus bambolii 46 0.81 3.33 0.83 3.27 1.48 4.38 0.75 325 11 9.74 107.14 77.73
Oreopithecus bambolii 47 0.66 2.72  0.69 282 091 3.16 0.37 1.56 898 9.04 81.18 57.44
Oreopithecus bambolii 48 0.59 324 1.06 2.96 0.83  3.99 030 2.98 9.37 9.63 90.23 69.31
Rangwapithecus gordoni 49 1.40 577 1.87 4.69 1.56  3.02 1.18 233 875 9.82 8593 7267
?Prohylobates sp. 50 1.68 289 153 272 1.80 2.87 1.57 241 7.50 8.95 67.13 4621
?Prohylobates sp. 51 1.32 329 1.22 3.33 1.17  2.21 1.28 1.97 7.00 845 5915 34.4]
?Prohylobates sp. 52 1.75 249 125 248 1.34 249 148 2.12 7.38 823  60.74 37.14
Aotus trivirgatus 53 095 1.45 1.23 1.66  0.65 1.57 0.57 1.28 3.12 397 12.39  8.89
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Table 1 (continued)

Taxon Pat- Hypo- Hypo- Proto- Proto- Meta- Meta- Ento- Ento- LBL  LBB LBA = OTA
tern  conid conid .conid conid conid conid conid conid
No. Z AD Z AD Z AD A AD
Aotus trivirgatus 54 090 192 095 1.76 0.98 1.68 1.06 1.60 337 399 13.45 10.67
Callicebus moloch 55 092 222 1.08 1.96 1.06 1.55 0.86 1.35 337 436 14.69 9.77
Callicebus moloch 56 0.83 1.71 1.00 1.58 1.13 1.74 1.05 1.62 337 4.16 14.02 9.58
Callicebus moloch 57 0.63 244 076 1.67 1.02 1.40 0.85 1.57 325 426 13.85 9.02
Saimiri sciureus 58 0.67 1.87 096 144 1.00 1.56 0.58 .15 263 3.69 9.70 4.96
Saimiri sciureus 59 0.62 1.81 0.82 1.68 1.19 1.67 0.84 1.04 25 3.85 9.63 5.68
Saimiri sciureus 60 0.67 1.76 1.03 1.37 1.12 1.40 0.75 1.28 2.5 3.90 9.75 5.15
Saimiri sciureus 61 0.70 1.56 1.09 146 1.13 1.60 0.59 1.06 238 3.83 9.12 5.31
Saimiri sciureus 62 0.68 159 1.15 148 1.22 1.54 0.66 1.00 225 3.53 7.94 4.99
Saimiri sciureus 63 0.45 1.86 0.80 1.22 1.09 1.58 0.70 1.21 2.5 4.03 10.08 5.71
Saimiri sciureus 64 0.62 138 1.08 1.29 1.05 1.74 0.54 094 25 3.75 9.38 5.68
Saimiri sciureus 65 0.84 185 137 1.71 1.15 1.64 0.59 1.08 238 392 9.33 6.40
Saimiri sciureus 66 0.57 1.67 1.00 1.35 1.14 1.53 0.69 1.08 2.5 3.75 9.38 6.19
Saimiri sciureus 67 0.65 149 1.12 1.28 1.39 1.72 0.61 1.33 25 3.89 9.73 5.69
Callithrix jacchus 68 0.00 0.00 064 1.07 0.73 1.16 0.94 146 238 292 6.94 3.92
Callithrix jacchus 69 0.00 000 044 093 097 142 0.87 130 237 3.00 711 3.73
Callithrix jacchus 70 0.00 0.00 0.68 098 0.76 1.38 0.68 1.01 2.12 287 6.08 347
Callithrix jacchus 71 0.00 0.00 0.86 1.08 0.89 1.22 0.91 1.49 225 324 7.29 3.91
Callithrix jacchus 72 0.00 0.00 061 099 0.92 1.39 0.79 .10 2.13 3.05 6.50 2.94
Callithrix jacchus 73 0.00 0.00 0.62 0.96 0.95 1.16 0.74 1.32 225 3.03 6.82 3.49
Callithrix penicillata 74 0.00 0.00 0.74 1.01 0.80 1.35 1.06 1.2 2.38 3.05 7.26 3.59
Callithrix penicillata 75 0.00 0.00 0.71 0.89 0.71 1.17 0.77 1.34 237 3.00 7.11 3.00
Callithrix penicillata 76 0.00 0.00 0.85 0.99 0.72 1.17 0.89 .52 2.12 3.07 6.51 3.20
Callithrix penicillata 77 0.00 0.00 0.83 1.02 0.78 1.28 0.88 1.41 2.25 3.01 6.77 3.57
Callithrix penicillata 78 0.00 0.00 0091 1.05 0.84 1.18 0.79 1.24 225 291 6.55 3.61
Callimico goeldii 79 0.00 000 095 139 1.66 1.90 0.87 1.31 2.50  3.52 8.80 4.78
Callimico goeldii 80 0.00 0.00 099 1.52 1.25 1.70 0.93 1.13 234 3.73 8.73 4.14
Callimico goeldii 81 0.00 0.00 091 1.30 1.25 1.72 0.91 142 238 341 8.12 3.92
Callimico goeldii 82 0.00 000 0.89 1.24 1.28 1.62 0.61 .11 212 370 7.84 312
Callimico goeldii 83 0.00 0.00 0.83 145 1.47 1.86 0.73 1.17 237 3.51 8.32 4.98

Individual specimens are represented by sequential numbers as a pattern. Measurements are expressed in millimeters and
square millimeters, respectively. Measurements of each cusp include the vertical height (Z) and oblique apical distance (AD) from
the cusp tip to the lowest point of the trigonid or talonid basin. LBL = Laser basal length; LBB = laser basal breadth; LBA = laser
basal area; OTA = occlusal table area.

Procedures

After scanning, each of the specimens was visualized on-screen to verify the integrity
of the digitization process. They required minimal editing to delete stray points. Obvious
measurement error (e.g. due to spectral reflection) and extraneous information that was cap-
tured by the digitizer, such as the mounting material (clay or hot glue) used to stabilize the
specimen during the scanning process, was removed. For this study, we also clipped out of
the virtual specimens the occlusal table of each tooth in order to measure the occlusal table
area. All in all, postprocessing took no more than 15 min per specimen.

The Stuttgart Neural Network Simulator (SNNS) was the software environment se-
lected for this research. The SNNS software was developed by the University of Stuttgart’s
Institute for Parallel and Distributed High-Performance Systems [1998]. The goal was to
create an efficient and flexible simulation environment for research on and application of
neural networks. The software is presently being maintained by the University of Tiibingen
and is available for download at www-ra.informatik.uni-tuebingen.de/SNNS;/.
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As explained above, learning within the SOM is time dependent in two ways. First, the
neighborhood size decreases with time, and, second, the amount of learning within the win-
ning neighborhood also decreases with time. Therefore, the learning parameters to be speci-
fied by the user include the size of the map, initial learning rate and neighborhood size, rates
at which these parameters decrease and number of iterations (epochs). The final design pa-
rameters used in this pilot study were determined after several experiments had been con-
ducted to gain insight from variations of these parameters on final map outputs. For exam-
ple, a 10 X 10 map size was the final selection for a map size to accommodate all 83 virtual
specimens. However, smaller map sizes were used (e.g. an 8 x 8 map size) but an analysis of
the maps resulting from these tests was deemed of less interest because it forced the network
to severely compress the data set.

Each of the 83 cases was stripped of their identifying information for the analyses so
the ANN was, in essence, performing a blind classification test. The order in which each
case was entered into the ANN was also randomized. The final design of all the SOMs used
in the study consisted of the following parameters: a rectangular neighborhood; horizontal
size, 10 neurons; vertical size, 10 neurons; initial neighborhood size, 6; epochs, 3,000. In
other words, each specimen was allowed 3,000 iterations to localize in a 10 X 10 SOM by
pattern matching against surrounding cases of a diminishing neighborhood size, beginning
with a radial distance of 6 cells away from the new target specimen. The weights that gener-
ated our final SOM are provided in Appendix 1.

To help visualize the results of the SOM and compare them against other ways of treat-
ing the measurement data, we used minimum spanning trees (MSTs). The advantage of a
MST in this context is that it arranges the information into a hierarchical clustering of cases,
whereas our SOMs display cases in a 2-D array of adjacencies. A spanning tree is an undi-
rected graph (V, E) that is connected and acyclic. It consists of some integer number of ver-
tices (V) and edges (E) connecting the vertices. In the case of the 10 x 10 SOM, we have
100 vertices and edges of O(V2) or 10,000. The MST is the spanning tree on the vertices
that has the minimal total length apportioned to its edges. In our case, an edge corresponds
to the Euclidean distance between two vertices. The MST algorithm used in this study was
adopted from Papadimitriou and Steiglitz [1982]. To evaluate and help visualize the dis-
criminatory effects of an ANN based upon digital morphology measures, we also present
MSTs based on raw descriptive data, of caliper and 3-D measures.

Results

Background Analysis

Figure 3 is a MST based on three conventional metrics, molar length (LBL),
breadth (LBB) and crown cross-sectional area (LBL x LBB). As expected, the ar-
ray is mainly influenced by size, as evidenced by its linearity and lack of parallel
adjacencies. Specimens having the smallest measurements, the callitrichines, form
one stem of the MST opposite those having the largest dimensions, the catarrhines.
Within platyrrhines, most lower and upper molars are segregated by size. This has
the effect of sorting some species as well. The uppers and lowers of Callicebus and
Aotus are not well separated from one another, however. Elsewhere among platyr-
thines, the only notable branching structure in the MST is confined to its central
section, representing upper molars of Callithrix species, Callimico and Saimiri.
The importance of this, like the few small branches evident elsewhere, is moot.
Catarrhine molars present no clear upper-lower molar separation because of the
near mirror image construction of their bilophodont cheek teeth. This same effect is
repeated throughout the analyses. The limited sorting of the catarrhine species that
does occur is also an effect of size differences.
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Fig. 3. MST based on untransformed linear measures. Upper case and lower case for all
figures denote upper and lower molars, respectively. Letter abbreviations for all figures:
Platyrrhines — CJ = Callithrix jacchus; CP = Callithrix penicillata; CG = Callimico goeldii;
SS = Saimiri sciureus; CM = Callicebus moloch; AT = Aotus trivirgatus, Catarrhines —
CS = Colobus satanus; MN = Macaca nigra; PR = 7Prohylobates sp.; OR = Oreopithecus
bambolii; PP = Piliocolobus pennantii; PV = Procolobus verus, RA = Rangwapithecus
gordoni.

Using 3-D measures describing cusp height, cusp location and occlusal table
area as descriptors alters the associative potential of the MST in a few ways, but it
does not demonstrably improve the analysis for the entire sample (fig. 4). Overall,
there is less linearity and more adjacency in the display because individuals of
some species are clustered more tightly, ostensibly because of the richer input in-
formation. A size vector continues to dominate the output, but there is also some
sorting based on shape and/or taxonomic effects. For example, Callimico uppers
are no longer associated with Saimiri (fig. 3), and they form a coherent group
linked with Callithrix. In addition, Saimiri, Callicebus and Aotus uppers are tightly
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Fig. 4. MST based on untransformed 3-D measures.

associated. Thus, platyrrhines with three- and four-cusped crowns are being dis-
criminated by the 3-D measures. Saimiri lowers are not interposed between uppers
and lowers of the callitrichines, as before. Rather, the uppers and lowers of all cal-
litrichines are mapped together. For the catarrhines, the 3-D MST is similar to the
display based on linear dimensions, but there is better segregation of 3 taxa, Ore-
opithecus, ?Prohylobates and Procolobus verus, where uppers and lowers of the
same species cluster together.

SOM Analysis

A SOM based on digital morphology measures (fig. 5) organizes the informa-
tion differently and, as seen in the MST (fig. 6) based on the SOM, in a more com-
plex fashion. The SOM matrix suggests a strong taxonomic and morphological ef-
fect. This is highlighted diagrammatically by the blank cells, which imply strong
disjunctions in pattern matching. Thus, a trace of blanks sets off the bottom right
quadrant of the SOM, which is occupied entirely by platyrrhine lower molars. An
irregular series of blanks separates all catarrhine teeth in the upper right quadrant.
Platyrrhines with three-cusped molars tend toward the bottom left, and those with
four-cusped teeth tend toward the top left corners of the matrix. Within these four
quadrants, there is also some taxonomic structure, as individuals of the same spe-
cies have a propensity to localize in adjacent cells. Finally, there is some data com-
pression, as expected. For example, only 9 of 10 Saimiri uppers and 8 of 10 Saimiri
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Fig. 5. SOM based on untransformed 3-D measures (see text).

lowers appear in the matrix. The other specimens have been suppressed as redun-
dant cases.

Turning to the MST based on the weights of each of the cases that were classi-
fied in the SOM (fig. 5) as well as the blanks, the overall complexity of the tree,
with numerous well-defined clusters and linkages, is profoundly different from the
relatively linear MSTs based on raw data (fig. 3, 4). Groups are strongly partitioned
or anchored by the empty cells of the SOM. Several clusters are rooted to the back-
bone of the MST through blanks. They depict the hierarchy of pattern matching
decisions linking each of the individual cases. There are several interesting points
of correspondence between this SOM tree and those based on raw measures. First,
Aotus and Callicebus, together, continue to occupy adjacent space near the left cen-
tral core of the MST. This result appears to be driven by resemblance in their upper
molars and by mutual resemblances shared with Saimiri (in M?) and the catarrhines
(in M%/,) as well. All of these forms have quadrate upper crowns. Second, the lower
molars of individual platyrrhine species, although grouping together in a salient
partition, are less well resolved taxonomically by the SOM than are their upper
molars.

The three most coherent clusters defined by the MST (fig. 6) represent callitri-
chine upper molars, Saimiri uppers and all catarrhine teeth. An offset comprising a
unit of Saimiri + Callithrix + Callimico uppers is evident, but this also includes an
anomaly, the artificially segmented Saimiri group. This two-tier organization of
cebid New World monkeys derived from the SOM data differs in interesting ways
from the previous MSTs. In the background study of raw data, caliper measures
linked Saimiri uppers and Callimico + Callithrix uppers (fig. 3), presumably be-
cause of size. Digital morphology measures associated Saimiri uppers with other
four-cusped platyrrhines, Aofus and Callicebus, apparently based on form. The
SOM-based MST spatially separates Saimiri uppers from the latter, but places them
as a point of linkage to the three-cusped callitrichines. It also places Saimiri lowers
well within the callitrichine cluster.
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Fig. 6. MST based on SOM weights derived from 3-D measures.

An improved clustering is well illustrated among callitrichines. Uppers of the
5 C. pennicillata individuals are linked intraspecifically in an hierarchy, offset in-
terspecifically through a blank space (implying absence of an existing case match),
but clearly associated with the C. jacchus group. Four of 5 C. jacchus are also
interlinked. However, there is no clear separation of C. jacchus from Callimico
uppers due to the misclassification of the 1 C. jacchus outlier. Were this case re-
moved, it seems likely all Callimico individuals would be identified as a discrete
unit. If so, the aggregation of C. jacchus might also resolve. The well-defined
Saimiri uppers are also split up, with 2 of 9 individuals appearing as outliers.

Among catarrhines, systematic improvements are less evident (fig. 6). There is
a tendency to divide colobines from the others, as before (fig. 3, 4), and a few indi-
vidual cases and taxa are better sorted out. The single Rangwapithecus upper molar
and 2 ?Prohylobates lowers, for example, are outliers as expected. One ?Prohylo-
bates tooth is fairly worn while the other is not. Oreopithecus uppers, and Colobus
satanus uppers and lowers, also form tighter clusters. Overall, the main benefit here
is that catarrhines are strongly demarcated from platyrrhines at the cluster root.

Neural Networks and 3-D Digital Morphology Folia Primatol 2005;76:303-324 315



CcP [ ] cpP CJ CG n cp | | cj cj
CP cpP CJ CG CG | cj | u cj
cJ cJ CJ B CG [ ] n ¢j cp cj
cP n cJ cG N n

[ | || [ | B ss | n cg M cg
SS SS SS B oss ss ss ss 85  c¢g
SS | | SsS W ss ss B ss cg
m SS SS ] ss n | cg [ ] m
S$S M ] B W AT AT B at cm
S§ Ss ] CM CM CM | at cm cm

cp W cp cp

Fig. 7. SOM based on 3-D measures, platyrrhines only.

Revising the Data Set

In an effort to reduce taxonomic noise specific to our sample (which was con-
structed in an intentionally lax fashion, but with an eye toward diversity), we exam-
ined platyrrhines more closely by eliminating catarrhines from the analysis (i.e.
reduced biological variation). A SOM based on the 62 New World monkey cases
produced similar results in terms of clusters and within-group links, and a much
simpler MST (fig. 7, 8). Several points are of interest. First, the 2-D matrix (fig. 7)
sorted most platyrrhines by a tooth axis (horizontally) and a taxonomic axis
(vertically), similar to the all-cases SOM: lower teeth on the right and upper teeth
on the left of the matrix, with the exception of dotus and Callicebus. Also, nearly
all of the top 40 cells display Callithrix molars, uppers on the left and lowers on the
right, strongly divided by a trace of blanks. The bottom 2 rows on the right are ex-
clusively M2s of Aotus and Callicebus. There is a separation of Saimiri M2s in the
middle and left lower quadrant of the SOM. Only the Callimico molars appear in
cells widely offset diagonally in the SOM, with uppers and lowers falling far apart
on the margins of the two Callithrix arrays.

In general, the MST (fig. 8) based on this SOM also sorts taxa from left to
right, whereas the top and bottom clusters relate to upper and lower molars, respec-
tively. This pattern is repeated in the central section of the backbone, where 4otus
and Callicebus are represented. As with all the previous tests, here the uppers tend
to give a better definition than the lowers. In addition, as with the SOM based on
the full platyrrhine-catarrhine sample, Saimiri and callitrichine uppers are segre-
gated, but linked to one another. Saimiri lowers, and Callicebus and Aotus uppers
and lowers, are the connecting elements. Saimiri uppers are also less diffusely or-
ganized than in the platyrrhine-catarrhine sample, but the branching structure of the
lowers is not easy to interpret. Nevertheless, the Callithrix molars are clustered
together here, whereas they were divided into two groups in the larger sample.
Another interspecific improvement appears here for the first time: Aotus and Cal-
licebus upper molars are clearly sorted into 2 clusters.
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Fig. 8. MST based on SOM weights derived from 3-D measures, platyrrhines only.

SOM Comparison to a Principal-Component Analysis

We also conducted a principal-component analysis (PCA) of the 83 virtual
specimens as a comparison with a more conventional multivariate analysis ap-
proach. PCA exploits the fact that in many cases where the dimension of the input
vector is large (12-D in our case) the components of the vectors may be highly cor-
related (redundant). PCA is often used for its ability to orthogonalize the compo-
nents of the input vector (so that they are uncorrelated with each other), to order the
resulting orthogonal components (principal components) so that those with the larg-
est variation come first and to eliminate those components that contribute the least
to the variation in the data set. The first 5 principal components for the full sample
of taxa based on 3-D measures are provided in Appendix 2.

Figure 9 and the data in Appendix 2 show that size evidently drives PCA 1, as
expected when using untransformed measurements. Size was also a strong factor in
the SOM, which distributes all the larger taxa in the right upper quadrant, with the
smallest taxa in the left lower quadrant. One obvious result for the PCA is that, as a
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