BROOKLYN COLLEGE Department of Chemistry

Chemistry 2

Final Exam

December 21, 1999 Page 1 of 10

Name:		14			 	1	ak	o I	ns	tr	uc	to	r-	Zì	100	١,	Le	vi	ne	i, 1	Vo.	10	sho	hu	x
	 	 	-	_	 		1_	-	_	_		_	_			_						_			

There are 200 points on this exam.

Calculators will be inspected and a card with chemistry information will be considered as evidence of cheating.

<u>Before</u> you begin the exam, write your name on this page and on the answer booklet. Answer questions 1-11 on the question sheet. Do questions 12-37 in the exam booklet.

You have 133 minutes. This is a long exam so do not spend too much time on any one question.

This exam has 10 pages. Make sure you have all of them.

PERIODIC CHART OF THE ELEMENTS

IA .	ΠA											LIIA	IVA	VA	YIA	VIIA	0
1 H 1.0079												2	t and			1 H 1.0079	2 He 4.0026
3	4											5	6	7	ß.	9	10
Li 6.941	Ве 9 0122											B 10.81	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.179
11 Na 22.989	12 Mg 24.305						*		2		8 - 5	13 AJ 26.981	14 Si 28,086	15 P 30.974	16 5 32.06	17 C1 35.453	18 Ar 39.948
19 K 39.09 8	20 Cs 40.08	11 Sc 44.956	22 Ti 47.88	23 V 50 941	24 Cr 51.996	25 Ma 54.938	28 Fe 55.847	27 Ca 58.933	28 Ni 58.69	29 Ct 63.546	30 Za 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
17 Rb 85.468	38 Sr 87,62	39 Y 88.906	40 7x 91.22	41 Nb 92.905	42 Mo 95.94	43 Te (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 5a 118.69	51 \$5 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	36 Ba 137,33	57 + La 138.90	72 HF 178.49	73 T n 180.95	74 W 183.85	75 Re 186.21	76 Ou 190.2	77 fr 192.22	78 Pt 193.08	75 Au 150.97	80 Hg 200.59	81 71 204.34	82 Ph 207.2	#3 Bi 206.98	84 Po (209)	#5 At (210)	86 Rn (222)
87 Pr (223)	88 Ra 226.0	89 # Ac 227.03											E			Se .	

* [.anthunides		59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sea 150.36	63 Es 151.96	64 Od 157,25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Le 174.97
/ Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	CI	Es	Fm	Md	No	Lr
	202.03	231 03	218.01	217.05	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(257)	(255)	(256)

Chemistry 2

Final Examination

December 21, 1999 Page 2 of 10

Name

Information

R = 0.08206 L-atm/mol-K = 8.314 J/(mol-K)

Answer questions 1-11 on these sheets.

- 1. (8 pts.) True or false? (four answers are required.)
 - a) An atom of one chemical element can never be transformed to an atom of a different element.
 - b) Two atoms that have different atomic numbers must be atoms of different elements.
 - c) Two atoms that have different mass numbers must be atoms of different elements.
 - d) Nuclear fission reactions produce nuclei with lower atomic numbers than the nucleus undergoing fission.
- 2. (3 pts.) Name this compound

- 3. (3 pts.) The functional group -C-NH- occurs in
 - a) esters
 - b) fats
 - c) carbohydrates
 - d) proteins
 - e) amines
- 4. (3 pts.) A gene is
 - a) a protein molecule
 - b) a DNA molecule
 - c) in some cases a protein and in some cases a DNA molecule
 - d) a carbohydrate polymer
- 5. (3 pts.) In a certain molecule a certain atom uses sp³d hybrid orbitals. How many sp³d hybrid orbitals are there on that atom?

- 6. (3 pts.) In an unsaturated $BaSO_4$ (aq) solution, is the ion product $[Ba^{2+}][SO_4^{2-}]$ less than, equal to, or greater than K_{SD} ?
- 7. (12 pts.) Answer the following questions for this molecule

- a) Give the value of the bond angle labeled a,
- b) How many w (pi) bonds are there in this molecule?
- c) How many σ (sigma) bonds are there in this molecule?
- d) Give the hybridization at the carbon atom that is bonded to the oxygen atom.
- e) Give the hybridisation at the nitrogen atom.
- f) Give the value of the bond angle labeled b.
- 8. (3 pts.) A solution is prepared by adding HCl and $\mathrm{HC_2H_3O_2}$ to water. In the equilibrium constant

$$\mathbf{x_a} = \frac{[\mathbf{H^+}] \ [\mathbf{c_2}\mathbf{H_3}\mathbf{o_2}]}{[\mathbf{Hc_2}\mathbf{H_3}\mathbf{o_2}]}$$

- a) The $[H^{\dagger}]$ in the numerator includes only the H^{\dagger} that came from the ionization of the $HC_2H_3O_2$.
- b) The $[H^+]$ in the numerator includes both the H^+ that comes from the ionization of the $HC_2H_3O_2$ and from the ionization of the HCl.

- 9. (3 pts.) Which one of the following gives a buffer solution?
 - a) 50 mL of 0.1 M HCl(aq) mixed with 80 mL of 0.1 M NaOH(aq).
 - b) 80 mL of 0.1 M HCl(aq) mixed with 50 mL of 0.1 M NaOH(aq).
 - c) 50 mL of 0.1 M $HC_2H_3O_2$ (eq) mixed with 50 mL of 0.1 M MaOH(eq).
 - d) 50 mL of 0.1 M $HC_2H_3O_2$ (aq) mixed with 80 mL of 0.1 M HaOH (aq).
 - e) 80 mL of 0.1 M $HC_2H_3O_2$ (aq) mixed with 50 mL of 0.1 M NaOH (aq).
 - f) None of the above.
- 10. (3 pts.) The gas reaction $N_2(g) + 3N_2(g) \stackrel{\sim}{\rightarrow} 2NH_3(g)$ has $K_p = 0.80$ at 600 K and has $K_p = 0.15$ at 650 K. Which statement is true?
 - a) This reaction has AH* > 0 and is exothermic.
 - b) This reaction has AH > 0 and is endothermic.
 - c) This reaction has ΔH^{\bullet} < 0 and is exothermic.
 - d) This reaction has ΔH^{α} < 0 and is endothermic.
- 11. (3 pts.) When the reaction $H_2(g) + 3H_2(g) \stackrel{\rightarrow}{=} 2HH_3(g)$ is at equilibrium,
 - a) The number of moles of N_2 present plus the number of moles of N_2 present must equal the number of moles of NN_3 present.
 - b) The number of moles of N_2 present plus three times the number of moles of N_2 present must equal two times the number of moles of NH_3 present.
 - c) The number of moles of NH₃ present does not change with time.
 - d) Both (a) and (c) are true.
 - e) Both (b) and (c) are true.

Answer questions 12-37 in the exam booklat. Show all work.

12. (8 pts.) For the mechanism

$$c1 + o_3 \rightarrow c1o + o_2$$

 $c1o + o \rightarrow c1 + o_2$

- a) Write the overall reaction
- b) Classify <u>each</u> of the following three species as a reactant, product, intermediate, catalyst, or innocent bystander:

C1, O3, C10

- 13. (6 pts.) The gas reaction
 - N₂(g) + 3H₂(g) ² 2NH₃(g) has K_p = 0.80 at 600 K.
 A mixture of these three gases at <u>BOUILIBRIUM</u> has a partial pressure of NH₃ of 0.65 atm and a partial pressure of N₂ of 1.44 atm. Find the partial pressure of H₂ in this equilibrium mixture.
- 14. (6 pts.) The reaction A + 2B → products is <u>second</u> order with respect to A and is <u>second</u> order with respect to B. In a solution with [A] = 0.30 M and [B] = 0.10 M at 25°C, the rate of this reaction is 2.0 x 10⁻⁴ M/s. Find the rate constant for this reaction at 25°C.
- 15. (4 pts.) For the reaction B + C → products, one finds that tripling the initial concentration of B while keeping the initial C concentration constant multiplies the rate by 9. What is the order with respect to B?

- 16. (4 pts.) A galvanic cell at 25°C is made from a half-cell consisting of a piece of Cu dipping into CuSO₄(aq) and a half-cell consisting of a piece of Ag dipping into AgNO₃(aq), with a salt bridge.
 - a) Write the <u>balanced</u>, <u>spontaneous</u> net <u>ionic</u> reaction for this cell. See data below.
 - b) Find E° for this call.

 For $Ag^{+}(aq) + e^{-} \rightarrow Ag$, E° = 0.80 V.

 For $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu$, E° = 0.34 V.
- 17. (7 pts.) Given these ΔG^*_f values at 600 K, find K_p at 600 K for the reaction $2NO_2(g) \rightarrow N_2O_4(g)$. Note that the temperature is not 25°C. For $NO_2(g)$, $\Delta G^*_f = 56.2$ kJ/mol and for $N_2O_4(g)$, $\Delta G^*_f = 96.6$ kJ/mol at 600 K.
- 18. (7 pts.) Mr. Vincent Adams (the friendly man in charge of the stockroom) dissolves 0.60 moles of the acid HX (where X stands for some unknown group of atoms) in water and dilutes the solution to 1.00 liter. He hands a 25 mL sample of this solution in a sealed test tube to Mary Smith, a student in Chem 2 P2. Mary Smith uses a pH meter to find that the pH of her solution is 1.00.
 - a) Find [H⁺] in Ms. Smith's solution.
 - b) Pind as accurately as possible the ionization constant K_a of the acid HX. Begin by writing the equation for the ionization of HX.

- 19. (9 pts.) Write nuclear reactions for each of these processes:
 - a) 238U emits an alpha particle (a 4He nucleus)
 - b) ¹¹C emits a positron (the antiparticle of an electron)
 - c) 231Th emits a beta particle (an electron)
- 20. (9 pts.) Complete and balance these reactions in the answer booklet

$$C_6H_{14} + O_2 \rightarrow$$

$$CH_3MH_2(aq) + H_2O \rightarrow$$

- A sample of a radioactive isotope X is observed to have an activity of 400 disintegrations per minute at 10:00 AM on July 6, 1999. Twenty-four hours later (at 10:00 AM on July 7, 1999), the activity of this sample has fallen to 50 disintegrations per minute. Find the half-life of isotope X without using the formula $\ln(W_t/N_0) = -kt$. Use only the definition of half-life. You must give your reasoning.
- 22. (4 pts.) A certain reaction has $\Delta G^{\circ} = -88$ kJ/mol at 25°C and has $\Delta S^{\circ} = 18$ J/(mol K) at 25°C. Find ΔH° for this reaction at 25°C.
- 23. (3 pts.) A student carries out a reaction in which $\mathrm{Mn^{2+}}$ is exidised to $\mathrm{Mn^{4+}}$. The student used a 0.60 M $\mathrm{MnCl_2}(\mathrm{aq})$ solution. What is the normality of this solution in this reaction?

- 24. (7 pts.) A saturated solution of CaF₂ in water contains
 0.0080 g of CaF₂ in 500 mL of solution at 25°C.
 Find K_{SD} for CaF₂ in water at 25°C.
- 25. (6 pts.) The half-life of 239 Pu is 2.4 x 10⁴ years. A sample of radioactive wasta contains 55.5 g of 239 Pu. How long will it take for only 2.48 g of 239 Pu to remain? Formulas: kt₁ = 0.693 and $\ln(N_t/N_0) = -kt$
- 26. (4 pts.) Draw all isomers with the formula $[Co(H_2O)_4Cl_2]$.
- 27. (4 pts.) Find [H+] in 0.010 K Ba(OH)2(aq).
- 28. (8 pts.) Consider the $[Mn(H_2O)_6]^{2+}$.
 - a) Draw the crystal-field energy level diagram for the 3d orbitals and show the placement of d electrons assuming this is a <u>weak-field</u> complex ion.
 - b) Repeat a) assuming this is a <u>strong-field</u> complex ion.
- 29. (3 pts.) Consider the octahedral complex ion ML₆, where M is a transition metal and L is a ligand. If this is a <u>strong-field</u> complex ion, what is the maximum possible number of unpaired electrons in ML₆?

 Draw an energy-level diagram with electrons to justify your answer.

Hint: Consider all possible numbers of d electrons.

- 30. (2 pts.) $\{CoF_6\}^{3-}$ is a weak-field ion, and $\{Co(CN)_6\}^{3-}$ is a strong-field ion. Which ion absorbs higher-frequency visible light?
 - a) $[CoF_6]^{3-}$ b) $[Co(CN)_6]^{3-}$
 - REMINDER: Answers to 30 and 31 (and all other questions after 11) go in the exam booklet.
- 31. (3 pts.) Give the formula of potassium diaquatetrachlorocobaltate(II).
- 32. (6 pts.) Draw structural formulas for all compounds with the formula C_5H_{12} . You must include the H atoms.
- 33. (6 pts.) Draw <u>structural</u> formulas for <u>three</u> different compounds with the formula C_3H_6O . Show the H atoms.
- 34. (9 pts.) Draw a structural formula or a condensed structural formula for
 - a) An aldehyde with two carbon atoms.
 - b) An ether with three carbon atoms.
 - c) An amine with two carbon atoms.

Your answers must not contain the letter R.

- 35. (7 pts.) Do <u>ons</u> of the following problems. Do <u>not</u> do both.

 You are <u>not</u> allowed to use the Henderson-Hasselbalch equation.
 - 35 I. A student mixes 30.0 mL of 0.20 M MH_3 (aq) with 70.0 mL of 0.30 M MH_4 Cl(aq). Find (H^+) in the final solution. $K_b = 1.8 \times 10^{-5}$ for MH_3 (aq). (If you do 35 I, do not do problem 35 II.)

(continued)

- 35 II. A student adds a certain number of moles of NH₃ to 100 mL of a 0.40 M NH₄Cl(aq) solution and finds that resulting solution has $\{H^+\}=8.3\times 10^{-10}$ M. How many moles of NH₃ were added? (Assume the final solution volume is still 100 mL. $K_b=1.8\times 10^{-5}$ for NH₃. (If you do 35 II, do not do 35 I.)
- 36. (7 pts.) Find $[H^{+}]$ in 0.20 M NaC₂H₃O₂ given that $K_a = 1.8 \times 10^{-5}$ for $HC_2H_3O_2$.
- 37. (8 pts.) Balance this reaction in acidic solution. You must use the method of half-reactions. Make sure you get the number of electrons correct in each half-reaction or you will not get credit for that half-reaction. $Cr_2O_7^{2-} + SH_2O_3 \rightarrow Cr^{3+} + HSO_4^{--}$

Extra credit (put answers in the exam booklet)

- EC1 (1 point) Give the first name of the lecturer in this course.
- EC2 (1 point) Give the last name of the lecturer in this course. (Spelling counts).
- EC3 (2 points) A reaction has the mechanism

A + B - C + D

2C → K + X

Find the overall reaction for this mechanism, <u>Hint</u>: Think about the intermediate.