CISC 3310 [27.1] Principles of Computer Architecture
4 hours; 4 credits

Introduction to digital logic. Basic digital circuits. Boolean algebra and combinational logic, data representation and transfer, digital arithmetic. Instruction sets. Introduction to assembly languages: ALU and memory reference instructions, flow control, subroutine linkage, arrays and structures. Memory. I/O systems. Performance. Relationship between software and architecture. (Not open to students who are enrolled in or have completed Computer and Information Science 3305 [27] or 3315 [28].)

Objectives
This course will be a required course for majors and is the only required course in which students study computer hardware: approximately half the course deals with how computer hardware is designed, and the other half deals with implications of hardware design for programmers and users.

By the end of this course students should be able to:
1. Understand computer data representations and arithmetic operations.
2. Understand computer instruction sets and assembly language.
3. Understand central processing unit organization and operation.
4. Understand computer memory systems.
5. Understand computer input/output operations and interfacing.

Syllabus

Week 1 Introduction. Boolean algebra. Truth tables. Logic gates. Combinatorial circuits (basic gates, multiplexors, decoders, adders)

Week 2 Combinatorial circuits. Sequential circuits (flip-flops, registers). Clocks and the basic clock cycle.

Week 3 Number representations (binary, decimal, octal, and hexadecimal). Integers (ones complement, twos complement, sign and magnitude, biased). Character representations (ASCII, Unicode).

Week 4 Floating point numbers. Error detection and correction. CPU basics (fetch/execute cycle, data path, control unit)

Week 5 Instructions and formats: arithmetic operations, logical operations, shift operations, instructions, conditional instructions, call and return.
Week 6 Addressing modes (PC relative, indirect, indexed). Alternative architectures. Pipelining (conflicts, branch predictions, superscalar processors, out-of-order execution).

Week 7 Review and midterm.

Week 9 Flow control (jumps, comparison, and conditional branches). Subroutine linkage (call, return, argument passing, local variables).

Week 11 Virtual memory. Secondary storage (disks). I/O systems: buses; device control.

Week 12 I/O systems: Interrupts; DMA; disks (RAID); data compression.

Week 13 Performance measures. Alternative architectures. RISC. Flynn’s taxonomy. Parallel architectures.

Bibliography: