
Objectives:

At the conclusion of this course, students will be expected to
1. know basics of complex numbers and how to manipulate them;
2. understand some fundamental ideas in vector spaces;
3. know how to manipulate quantum gates;
4. be able to understand and write basic quantum algorithms.
5. They should also have a general outline of the more advanced and speculative parts of the field.

Syllabus:

Week 1: Overview of Quantum Computing
 History (Feynman, Deutch, Grover, Shor)
 Double-slit experiment
 Superposition
 Contemporary experimental results

Week 2 and 3: Basic mathematical preliminaries.

Week 4: Basic quantum theory
 State Spaces,
 Bras and Kets
 Evolution
 Measurements

Week 5: More quantum theory
 Superposition
 Entanglement

Week 6: Gates and Quantum Gates
 Review of Classical Gates
Qubits
Universal quantum gates

Week 7-9: Quantum Algorithms
 Deutsch’s Algorithm
 Deutsch-Jozsa Algorithm
 Simon’s Periodicity Algorithm
 Grover’s Search Algorithm

Week 10: Factoring Algorithms
 Some mathematical background
 Shor’s Algorithms
 Cutting edge implementations

Week 11: Quantum Complexity Theory
 Basic complexity classes
 Quantum Turing Machines
 BPP, BQP

Week 12: Quantum Cryptography
 BB84; B92

Week 13: Implementations and Realizations
 Optical photon; Nuclear magnetic resonance; Ion traps

Bibliography:
Course Text:

Other Texts:

Supplementary Texts: