Department of Mathematics Brooklyn College

Final Examination — Fall 2005 Mathematics 2.9

Show all work and justify all your answers!

Calculator answers are not acceptable in starred (*) questions!

Part I: (40 points) Do all FIVE questions in this part.

- 1. (a) Find the midpoint of the line segment with endpoints A(-1, 5) and B(7, 3).
 - (b) Find an equation of the straight line through the point (1, 7) parallel to the straight line passing through A and B.
- 2. (a) Sketch the graph of the quadratic function $y = x^2 14x + 46$. Where is the function increasing? decreasing? What are the coordinates of its maximum (or minimum)?
 - (b) Simplify $\frac{1+2i}{-2+3i}$. Express your answer in the form a+bi, where a and b are real numbers.
- 3. (a) Give the term involving y^8 in the expansion of $(2x y^2)^{10}$.
 - (b) *Evaluate $\log_9 27 + \log_7 \frac{1}{40}$.
- 4. Solve each of the following inequalities. Use interval notation to describe your solution.
 - (a) |4 5x| > 49(b) $\frac{3 - 2x}{x + 2} \le 0$
- 5. (a) *Find the sin, tan and sec of the angle θ in standard position if (-12, -5) is a point on the terminal side.
 - (b) Convert the expression $\log_b \left(\frac{\sqrt[3]{X}}{YZ^3}\right)$ into an expression involving $\log_b X$, $\log_b Y$ and $\log_b Z$.

(c) *Evaluate
$$\cos^{-1}(\frac{\sqrt{3}}{2}) + 2\tan^{-1}(\sqrt{3})$$

Please turn over!

Part II. (60 points) Do SIX of the following seven questions.

6. (a) Find the center and radius of the circle having the equation

$$x^2 + y^2 + 6x - 8y = 7$$

(b) Find the center, vertices, equations of the asymptotes and sketch the hyperbola with equation

$$\frac{(x+6)^2}{4} - \frac{(y-4)^2}{16} = 1$$

- 7. (a) Solve $\log_7(x) + \log_7(2x 13) = 1$. (b) Solve $\sqrt{16 - x} + 4 = x$.
- 8. f(x) = 2x + 3 and $g(x) = x^2 + 4x + 3$. Find and simplify
 - (a) $g \circ f(x)$
 - (b) $f^{-1}(x)$
- 9. (a) Use the Rational Root theorem to list all possible rational roots of the equation $4x^3 + 4x^2 35x + 52 = 0.$
 - (b) Show that -4 is a root of the equation of part (a), and find the remaining roots.
- 10. (a) *Find exactly the sin, sec and tan of the angle t if $\cos t = \frac{4}{9}$ and angle t is in the fourth quadrant.
 - (b) Use your calculator to find a seven digit approximation to the angle t. Your answer should be in radians!
 - (c) Sketch the graph of $y = \sin^{-1} x$
- 11. (a) Find the amplitude and period of $c(x) = 2\cos 3x$.
 - (b) Sketch the graph of y = c(x) over one period of the function. Label the points at which the maximums and the minimums of c(x) occur.
- 12. (a) Find the intercepts, asymptotes and sketch the graph of

$$r(x) = \frac{x+2}{x^2 - 6x + 5}$$

(b) Verify the identity:

$$\cos^4 x - \sin^4 x = \cos 2x$$

Place the numbers of the question you chose to omit in Part II on the front of your booklet!