Mathematics Department
Brooklyn College, City University of New York
Math 2101 (Linear Algebra I)
3 hours lecture, 1 hour recitation; 3 credits

Suggested Textbooks:
- Matrices and Linear Algebra, second edition, by Hans Schneider and George Phillip Barker
- Linear Algebra and its applications, fourth edition, by David Lay
- Elementary Linear Algebra: applications version, eleventh edition, by Howard Anton and Chris Rorres

1. Matrix algebra
 - Matrices and matrix operations
 - Algebraic properties of matrices
 - Invertible matrices
 - Matrix inversion algorithm

2. Systems of linear equations
 - Homogeneous and non-homogeneous systems
 - Matrix representations of linear systems
 - Row reduction algorithms for matrices
 - Row echelon form

3. Determinants
 - Properties of determinants
 - Determinants by cofactor expansion
 - Cramer's rule

4. Vector spaces
 - Definition and elementary properties
 - Examples, including matrices, geometric vectors, and function spaces
 - Subspaces

5. Linear independence
 - Sets of linearly independent vectors
 - Span, dimension, and basis
 - Coordinates with respect to different bases
 - Isomorphism between vector spaces of the same dimension

6. Linear transformations
 - Definition and examples
 - Properties. Addition and composition of transformations
 - Inverse transformation
 - Matrix representation of linear transformations
 - Null space and range
 - Matrix representation with change of basis

7. Inner product spaces
 - Dot product, norm and distance
 - Orthogonality and orthogonal projections
 - Orthogonal bases
 - Gram-Schmidt process
 - Eigenvalues and eigenvectors; the characteristic equation
 - Diagonalizable matrices; Symmetric matrices