1) (a) Given two functions \(f \) and \(g \). What is meant by the composite function \(f \circ g \).
 (b) What is meant by (i) a one-to-one function \(f \).
 (ii) the inverse of a one-to-one function \(f \)
 (c) How are the graphs of \(f \) and \(f^{-1} \) related?
 (d) What is the division algorithm?

2) (a) Let \(f(x) = \frac{1}{x} \)
 Find \(f \circ f \) and its domain.
 (b) Find the domain and inverse of \(f(x) = \frac{4x-2}{3x+1} \).
 (c) (i) Sketch the graph of \(f(x) = \sqrt{x-1} \). What are the domain
 and range of \(f \)?
 (ii) Use the graph of \(f \) to sketch the graph of \(f^{-1} \). What are the domain
 and range of \(f^{-1} \)?
 (iii) Find the equation for \(f^{-1} \).

3) (a) Suppose that \(g(x) = 2x + 1 \) and \(h(x) = 4x^2 + 4x + 7 \).
 Find a function \(f \) such that \(f \circ g = h \).
 Hint: Think about what operations you will have to perform on the formula for \(g \) to end up the formula for \(h \).
 Now suppose that \(f(x) = 3x + 5 \) and \(h(x) = 3x^2 + 3x + 2 \).
 Use similar reasoning to find \(g \) such that \(f \circ g = h \).

 (Please try if time permits):
 (b) Let \(P(x) = 3x^4 - x^3 - 2x^2 + 4x - 1 \) and \(D(x) = x + 2 \).
 Find polynomials \(Q(x) \) and \(R(x) \) such that
 \(P(x) = D(x)Q(x) + R(x) \).