## Department of Mathematics Brooklyn College

## Final Examination — Spring 2005 Mathematics 2.9

Part I: Answer all 6 questions in this part (10 points each)

- 1. Let  $p(x) = 2x^3 7x^2 14x 5$ 
  - (a) Use the **Rational Root Theorem** to list all possible roots of p(x) = 0
  - (b) Find all roots of p(x) = 0
- 2. (a) Find the vertex, y-intercept and x-intercepts of the graph of the parabola  $y = x^2 4x 5$ 
  - (b) **Sketch** the graph labeling the vertex and all intercepts
- 3. (a) Find the equation of the **ellipse** with vertices at P(-9, 4), Q(-3, 7), R(3, 4), T(-3, 1).
  - (b) **Sketch** the graph, label the **major** and **minor** axes and the **foci**.
- 4. Sketch the graph of of the hyperbola

$$\frac{(x-3)^2}{36} - \frac{(y+5)^2}{64} = 1$$

Label the center, vertices, foci and the asymptotes.

- 5. Sketch the graph of  $y = 3\sin 2x$  over the interval  $0 \le x \le \pi$ . Indicate all intercepts. (Use increments of  $\pi/8$  on the x-axis.)
- 6. Let  $f(x) = \frac{4x 12}{x + 3}$ 
  - (a) Find the vertical and horizontal asymptotes
  - (b) Find all x and y intercepts
  - (c) Using the above information, **sketch** the graph of f(x)

## Part II. Answer 8 out of 10 problems on this part (5 points each)

- 7. Find the equation of the perpendicular bisector of the line segment PQ where P(-3, -2) and Q(5, 6).
- 8. (a) If  $\sin A = -8/17$  and A is in quadrant III, find the numerical value of  $\cos 2A$ 
  - (b) Find the exact value of  $\cos(\arctan(-3/4))$ .
- 9. Find the center and radius of the circle  $x^2 + y^2 + 6x 10y + 9 = 0$
- 10. Prove the trigonometric identity:

$$\frac{\sin x + \tan x}{1 + \sec x} = \sin x$$

- 11. Solve and check :  $\sqrt{x+24} x = 4$
- 12. Solve and check:  $\log_{10} x + \log_{10} (x 21) = 2$
- 13. (a) Solve the inequality  $|3x 5| \le 4$ 
  - (b) Find the **domain** of the function  $f(x) = \frac{\sqrt{4-x^2}}{1-x^2}$
- 14. Let f(x) = 3x 2 and  $g(x) = x^2 + 2$ . Find (a)  $(f \circ g)(x)$  (b)  $(f \circ f)(x)$  (c)  $(g \circ f)(-2)$
- 15. (a) Given that  $f(x) = \frac{x-1}{2x+3}$  is a one-to-one function, find the **inverse** function  $f^{-1}(x)$ .
  - (b) Show f(-1) = -2, then show that  $f^{-1}(-2) = -1$ .
- 16. Let A = -1 and let  $f(x) = 3x^2 2x$ . Find and simplify

$$\frac{f(x) - f(A)}{x - A}$$