PART I: Answer all 8 questions. Questions 1 - 4 are worth 7 points each and question 5 - 8 are worth 8 points each. Justify each answer and show all your work.

1. Let \(f(x) = 2x^2 + 1 \). Find and simplify:

 (a) \(\frac{f(x+h) - f(x)}{h} \)

 (b) \(f(\sqrt{x}) - 1 \)
2. (a) Find an equation of the straight line that passes through the points
(1, −5) and (−2, 16).

(b) Given points $A(1, −3)$, $B(3, −3)$, $C(3, 5)$ and $D(1, 5)$. Show
that the length of the line segment BC is four times the length
of the line segment DC.
3. (a) Find the center and radius of the circle having equation
\[x^2 + y^2 + 8x - 4y - 44 = 0. \]

(b) Sketch the circle in part (a) and indicate its center and at least four points on it.
4. For the function given by $f(x) = \frac{x-2}{x+1}$:
 (a) Find the x and y intercepts of the graph of $f(x)$.
 (b) Find the vertical and horizontal asymptotes of $f(x)$.
 (c) Use the information above to sketch the graph of $f(x)$.
5. Sketch the graph of \(y = f(x) = -x^2 + 4x - 3 \).
 Identify its vertex and \(x \) and \(y \) intercepts on the graph, and label each point. State the domain and range of \(f(x) \).
6. Find all zeros (roots), real or complex, of the polynomial
\[P(x) = x^3 + 3x^2 + 4x - 2. \] Give the complete factorization of \(P(x) \).
7. Find the domain of \(g(x) = \sqrt{x^2 + x} \). Write the solution using interval notation and graph it on the real number line.
8. Use the graph of $y = x^2$ and transformations to sketch the graph of $y = 3(x - 2)^2 - 3$. Label all intercepts.
PART II: Answer 4 out of 5 questions. Each question is worth 10 points. Justify each answer and show all your work.

9. (a) Solve the equation and check: \(\frac{1}{5x} = \frac{x-8}{x^2+4x} \)

(b) Factor the following expression completely:
\(3x^3 - 36x^2 + 96x \)
10. (a) Write $\frac{3-i}{4+2i}$ in the form $a + bi$, where a and b are real numbers.

(b) Solve for x: $| -2x - 1 | > 3$
11. (a) Solve the following equation and check: \(\sqrt{x - 1} = x - 3 \)

(b) Solve for \(x \): \(2^{(3x+1)} = \frac{1}{4} \)
12. (a) Solve for x and check: $\log_4(x^2 + 3x) - \log_4(x + 5) = 1$

(b) Given $f(x) = \frac{1}{x+1}$ and $g(x) = \frac{1}{x}$. Find $(f \circ g)(x)$ and state its domain.
13. (a) Solve the system of equations:
\[2x + 7y = 3 \]
\[3x + 4y = -2 \]

(b) Sketch the graph of \(f(x) = \sqrt{x-2} \). Use the graph of \(f \) to sketch the graph of \(f^{-1} \), the inverse of \(f \). State the domain and range of \(f^{-1} \). Find \(f^{-1} \).