CISC 3150 Object-Oriented Programming

3 hours; 3 credits

Principles and implementation issues in object-oriented programming languages, including: memory and run-time models; encapsulation, inheritance and polymorphism; generics. Collections and other frameworks and hierarchies. Effects of binding time considerations on language design and implementation. Introduction to design patterns, such as adapter, singleton, and model-view-controller. Formal design specifications such as UML. Case studies chosen from multiple languages such as C++, Java and Smalltalk.

Prerequisite: CISC 3120 [20.1] and 3130 [22].

Syllabus

Review of OOP Basics Encapsulaiton Inheritance Polymorphism

Advanced Concepts and Techniques

Forms of inheritance: interface, implementation

Programming by contract Subtyping vs subclassing Double-dispatching

Reflection and runtime type information

Multiple inheritance

Design Patterns

Overview

Creational

Abstract Factory, Builder, Factory, Lazy Initialization, Object Pool, Singleton

Structural

Adaptor, Bridge, Composite, Flyweight

Behavioral

Chain of Responsibility, Command, Iterator, Observer, Strategy

MModel-View-Controller

Collection Hierarches

Java Collections Framework

C++ STL containers

Generic Programming in the Context of OOP

Java Generics

C++'s STL <algorithm> library

Smalltalk

History and philosophy

Basic programming: syntax, semantics, the environment; images

Meta classes

Implementation of Object-Oriented Languages
Formal models of OOP systems
Unified Modelling Language (UML)
Linear temporal logic
Computational tree logic
Formal specification languages (Z, B, etc.)